来自当知百科
跳转到: 导航搜索
  
4c3cad10d1b17.jpg
(核)反应堆 (nuclear) reactor 能维持可控自持链式核裂变反应的装置。

  指任何含有其核燃料按此种方式布置的结构,使得在无需补加中子源的条件下能在其中发生自持链式核裂变过程。

  注释:更广泛的意义上讲,反应堆这一术语应覆盖裂变堆、聚变堆、裂变聚变混合堆,但一般情况下仅指裂变堆。

  核反应堆,又称为原子反应堆反应堆,是装配了核燃料以实现大规模可控制裂变链式反应的装置。

目录

核反应堆类型

  
核反应堆内部
根据用途,核反应堆可以分为以下几种类型①将中子束用于实验或利用中子束的核反应,包括研究堆、材料实验等。②生产放射性同位素的核反应堆。③生产核裂变物质的核反应堆,称为生产堆。④提供取暖、海水淡化、化工等用的热量的核反应堆,比如多目的堆。⑤为发电而发生热量的核反应,称为发电堆。⑥用于推进船舶飞机火箭等到的核反应堆,称为推进堆。

  另外,核反应堆根据燃料类型分为天然气铀堆、浓缩铀堆、堆;根据中子能量分为快中子堆和热中子堆;根据冷却剂(载热剂)材料分为水冷堆、气冷堆、有机液冷堆、液态金属冷堆;根据慢化剂(减速剂)分 为石墨堆、重水堆、压水堆、沸水堆、有机堆、熔盐堆、铍堆;根据中子通量分为高通量堆和一般能量堆;根据热工状态分为沸腾堆、非沸腾堆、压水堆;根据运行方式分为脉冲堆和稳态堆,等等。核反应堆概念上可有900多种设计,但现实上非常有限。

核反应堆工作原理

  
核反应堆工作原理图
核反应堆是核电站的心脏,它的工作原理是这样的:

  原子由原子核与核外电子组成。原子核由质子与中子组成。当铀235的原子核受到外来中子轰击时,一个原子核会吸收一个中子分裂成两个质量较小的原子核,同时放出2—3个中子。这裂变产生的中子又去轰击另外的铀235原子核,引起新的裂变。如此持续进行就是裂变的链式反应。链式反应产生大量热能。用循环水(或其他物质)带走热量才能避免反应堆因过热烧毁。导出的热量可以使水变成水蒸气,推动气轮机发电。由此可知,核反应堆最基本的组成是裂变原子核+热载体。但是只有这两项是不能工作的。因为,高速中子会大量飞散,这就需要使中子减速增加与原子核碰撞的机会;核反应堆要依人的意愿决定工作状态,这就要有控制设施;铀及裂变产物都有强放射性,会对人造成伤害,因此必须有可靠的防护措施。综上所述,核反应堆的合理结构应该是:核燃料+慢化剂+热载体+控制设施+防护装置。

  还需要说明的是,铀矿石不能直接做核燃料。铀矿石要经过精选、碾碎、酸浸、浓缩等程序,制成有一定铀含量、一定几何形状的铀棒才能参与反应堆工作。

核反应堆用途

  核裂变时既释放出大量能量、又释放出大量中子。核反应堆有许多用途,但归结起来,-是利用裂变核能,二是利用裂变中子。

  核能主要用于发电,但它在其它方面也有广泛的应用。例如核能供热、核动力等。

  核能供热是廿世纪八十年代才发展起来的一项新技术,这是一种经济、安全、清洁的热源,因而在世界上受到广泛重视。在能源结构上,用于低温(如供暖等)的热源,占总热耗量的一半左右,这部分热多由直接燃煤取得,因而给环境造成严重污染。在我国能源结构中,近70%的能量是以热能形式消耗的,而其中约60%是120℃以下的低温热能,所以发展核反应堆低温供热,对缓解供应和运输紧张、净化环境、减少污染等方面都有十分重要的意义。核供热是一种前途远大的核能利用方式。核供热不仅可用于居民冬季采暖,也可用于工业供热。特别是高温气冷堆可以提供高温热源,能用于煤的气化、炼铁等耗热巨大的行业。核能既然可以用来供热、也一定可以用来制冷。清华大学在五兆瓦的低温供热堆上已经进行过成功的试验。核供热的另一个潜在的大用途是海水淡化。在各种海水淡化方案中,采用核供热是经济性最好的一种。在中东、北非地区,由于缺乏淡水,海水淡化的需求是很大的。

  核能又是一种具有独特优越性的动力。因为它不需要空气助燃,可作为地下、水中和太空缺乏空气环境下的特殊动力;又由于它少耗料、高能量,是一种一次装料后可以长时间供能的特殊动力。例如,它可作为火箭、宇宙飞船、人造卫星、潜艇、航空母舰等的特殊动力。将来核动力可能会用于星际航行。现在人类进行的太空探索,还局限于太阳系,故飞行器所需能量不大,用太阳能电池就可以了。如要到太阳系外其他星系探索,核动力恐怕是唯一的选择。美、俄等国-直在从事核动力卫星的研究开发,旨在把发电能力达上百千瓦的发电设备装在卫星上。由于有了大功率电源,卫星在通讯、军事等方面的威力将大大增强。1997年10月15日美国宇航局发射的“卡西尼”号核动力空间探测飞船,它要飞往土星,历时7年,行程长达35亿公里漫长的旅途。

  核动力推进,目前主要用于核潜艇、核航空母舰和核破冰船。由于核能的能量密度大、只需要少量核燃料就能运行很长时间,这在军事上有很大优越性。尤其是核裂变能的产生不需要氧气,故核潜艇可在水下长时间航行。正因为核动力推进有如此大的优越性,故几十年来全世界己制造的用于舰船推进的核反应堆数目已达数百座、超过了核电站中的反应堆数目(当然其功率远小于核电站反应堆)。现在核航空母舰、核驱逐舰、核巡洋舰与核潜艇一起,已形成了一支强大的海上核力量。

  核反应堆的第二大用途就是利用链式裂变反应中放出的大量中子。这方面的用途是非常多的,我们这里仅举少量几个例子。我们知道,许多稳定的元素的原子核如果再吸收一个中子就会变成一种放射性同位素。因此反应堆可用来大量生产各种放射性同位素。放射性同位素在工业、农业、医学上的广泛用途现在几乎是尽人皆知的了。还有,现在工业、医学和科研中经常需用一种带有极微小孔洞的薄膜,用来过滤、去除溶液中的极细小的杂质或细菌之类。在反应堆中用中子轰击薄膜材料可以生成极微小的孔洞,达到上述技术要求。利用反应堆中的中子还可以生产优质半导体材料。我们知道在单晶硅中必须掺入少量其他材料,才能变成半导体,例如掺入磷元素。一般是采用扩散方法,在炉子里让磷蒸汽通过硅片表面渗进去。但这样做效果不是太理想,硅中磷的浓度不均匀,表面浓度高里面浓度变低。现在可采用中子掺杂技术。把单晶硅放在反应堆里受中子辐照,硅俘获一个中子后,经衰变后就变成了磷。由于中子不带电、很容易进入硅片的内部,故这种办法生产的硅半导体性质优良。利用反应堆产生的中子可以治疗癌症。因为许多癌组织对于硼元素有较多的吸收,而且硼又有很强的吸收中子能力。硼被癌组织吸收后,经中子照射,硼会变成锂并放出α射线。α射线可以有效杀死癌细胞,治疗效果要比从外部用γ射线照射好得多。反应堆里的中子还可用于中子照相或者说中子成像。中子易于被轻物质散射,故中子照相用于检查轻物质(例如炸药、毒品等)特别有效,如果用χ光或超声成像则检查不出来。

核反应堆发展过程

  早在1929年,科克罗夫特就利用质子成功地实现了原子核的变换。但是,用质子引起核反应需要消耗非常多的能量,使质子和目标的原子核碰撞命中的机会也非常之少。

  1938年,德国人奥托·哈恩和休特洛斯二人成功地使中子和铀原子发生了碰撞。这项实验有着非常重大的意义,它不仅使铀原子简单地发生了分裂,而且裂变后总的质量减少,同时放出能量。尤其重要的是铀原子裂变时,除裂变碎片之外还射出2至3个中子,这个中子又可以引起下一个铀原子的裂变,从而发生连锁反应。

  1939年1月,用中子引起铀原子核裂变的消息传到费米的耳朵里,当时他已逃亡到美国哥伦比亚
人类第一座核反应堆的设计者:费米
大学,费米不愧是个天才科学家,他一听到这个消息,马上就直观地设想了原子反应堆的可能性,开始为它的实现而努力。费米组织了一支研究队伍,对建立原子反应堆问题进行彻底的研究。费米与助手们一起,经常通宵不眠地进行理论计算,思考反应堆的形状设计,

  有时还要亲自去解决石墨材料的采购问题。

  1942年12月2日,费米的研究组人员全体集合在美国芝加哥大学足球场的一个巨大石墨型反应堆前面。这时由费米发出信号,紧接着从那座埋没在石墨之间的7吨铀燃料构成的巨大反应堆里,控制棒缓慢地被拔了出来,随着计数器发出了咔嚓咔嚓的响声,到控制棒上升到一定程度,计数器的声音响成了一片,这说明连锁反应开始了。这是人类第一次释放并控制了原子能的时刻。

  1954年前苏联建成世界上第一座原子能发电站利用浓缩铀作燃料,采用石墨水冷堆,电输出功率为5000千瓦。1956年,英国也建成了原子能电站。原子能电站的发展并非一帆风顺,不少人对核电站的放射性污染问题感到忧虑和恐惧,因此出现了反核电运动。其实,在严格的科学管理之下,原子能是安全的能源。原子能发电站周围的放射性水平,同天然本底的放射性水平实际并没有多大差别。

  1979年3月,美国三里岛原子能发电站由于操作错误和设备失灵,造成了原子能开发史上空前未有的严重事故。然而,由于反应堆的停堆系统、应急冷却系统和安全壳等安全措施发挥了作用,结果放射性外逸量微乎其微,人和环境没有受到什么影响,充分说明现代科技的发展已能保证原子能的安全利用。

  总之,由于反应堆是一个巨大的中子源,因此是进行基础科学和应用科学研究的一种有效工具。目前其应用领域日益扩大,而且其应用潜力也很大,有待人们的进一步开发。

  在原子能的和平利用中,最典型的当数原子能发电,也称核电。如果说原子弹的爆炸是瞬间、不受控制地进行的铀-235或钚-239核裂变链锁反应的结果,那么原子能发电站利用的能量是来受控状态下持久进行的铀-235或钚-239核裂变链锁反应。一种可以人为控制核裂变反应快慢并能维持链锁核裂变反应的装置叫做反应堆。费米发明的反应堆是用来生产钚-239的,这种反应堆叫做生产堆。原子能发电站的核心也是反应堆,它是用反应堆内核裂变反应产生的巨大热量生成饱和蒸汽驱动气轮机发电,这种反应堆叫做动力堆。原子能发电与用煤、用油发电的区别仅在于产生热量的装置不同,前者是原子能反应堆,后者是燃煤、燃油锅炉

  反应堆的类型很多,但它主要由活性区,反射层,外压力壳和屏蔽层组成。活性区又由核燃料,慢化剂,冷却剂和控制棒等组成。现在用于原子能发电站的反应堆中,压水堆是最具竞争力的堆型(约占61%),沸水堆占一定比例(约占24%),重水堆用的较少(约占5%)。压水堆的主要特点是:1)用价格低廉、到处可以得到的普通水作慢化剂和冷却剂,2)为了使反应堆内温度很高的冷却水保持液态,反应堆在高压力(水压约为15.5MPa)下运行,所以叫压水堆;3)由于反应堆内的水处于液态,驱动汽轮发电机组的蒸汽必须在反应堆以外产生;这是借助于蒸汽发生器实现的,来自反应堆的冷却水即一回路水流入蒸汽发生器传热管的一侧,将热量传给传热管另一侧的二回路水,使后者转变为蒸汽(二回路蒸汽压力为6—7MPa,蒸汽的温度为275—290℃);4)由于用普通水作慢化剂和冷却剂,热中子吸收截面较大,因此不可能用天然铀作核燃料,必须使用浓缩铀(铀-235的含量为2—4%)作核燃料。沸水堆和压水堆同属于轻水堆,它和压水堆一样,也用普通水作慢化剂和冷却剂,不同的是在沸水堆内产生蒸汽(压力约为7MPa),并直接进入气轮机发电,无需蒸汽发生器,也没有一回路与二回路之分,系统特别简单,工作压力比压水堆低。然而,沸水堆的蒸汽带有放射性,需采取屏蔽措施以防止放射性泄漏。重水堆是用重水作慢化剂和冷却剂,因为其热中子吸收截面远小于普通水的热中子吸收截面,所以可以用天然铀作为重水堆的核燃料。所谓热中子,是指铀-235原子核裂变时射出的快中子经慢化后速度降为2200m/s、能量约为1/40eV的中子。热中子引起铀-235核裂变的可能性,比被铀-238原子核俘获的可能性大190倍。这样,在以天然铀为燃料的重水堆中,核裂变链锁反应可持续进行下去。由于重水慢化中子不如普通水有效,因此重水堆的堆芯比轻水堆大得多,使得压力容器制造变得困难。重水堆仍需配备蒸汽发生器,一回路的重水将热量带到蒸汽发生器,传给二回路的普通水以产生蒸汽。重水堆的最大优点是不用浓缩铀而用天然铀作核燃料,但是阻碍其发展的重要原因之一是重水很难得到,因为在天然水中重水只占1/6500。

  前苏联于1954年建成了世界上第一座原子能发电站,掀开了人类和平利用原子能的新的一页。英国和美国分别于1956年和1959年建成原子能发电站。到2004.9.28,在世界上31个国家和地区,有439座发电用原子能反应堆在运行,总容量为364.6百万千瓦,约占世界发电总容量的16%。其中,法国建成59座发电用原子能反应堆,原子能发电量占其整个发电量的78%;日本建成54座,原子能发电量占其整个发电量的25%;美国建成104座,原子能发电量占其整个发电量的20%;俄罗斯建成29座,原子能发电量占其整个发电量的15%。我国于1991年建成第一座原子能发电站,包括这一座在内,现在投入运行的有9座发电用原子能反应堆,总容量为660万千瓦。我国另有2座反应堆在建设中。我国还为巴基斯坦建成一座原子能发电站。

  原子能发电比常规发电的主要优点是:1)能量高度集中,燃料费用低廉,综合经济效益好。1公斤铀-235或钚-239提供的能量在理论上相当于2300吨无烟煤。在现阶段的实际应用中,1公斤天然铀可代替20—30吨煤。虽然原子能发电一次性基建投资较大,可是核燃料费用比煤和石油的费用便宜得多。所以,原子能发电的总成本已低于常规发电的总成本。2)因所需燃料数量少而不受运输和储存的限制。例如,一座100万千瓦的常规发电厂,一年需要烧掉300万吨煤,平均每天需要一艘万吨轮来运煤。而使用原子能发电,一年只需要30吨核燃料。3)污染环境较轻。原子能发电不向外排放CO、SO2、 NOX等有害气体和固体微粒,也不排放产生温室效应的二氧化碳。原子能发电站日常放射性废气和废液的排放量很小,周围居民由此受到的辐射剂量小于来自天然本底的1%。大量释放放射性物质的严重事故,则发生的概率极低,全世界10000堆年的运行历史中只发生过一次波及厂外的切尔诺贝利事故,它是运行人员违章操作和反应堆本身设计缺陷(缺乏必要的安全屏障)所造成的。大家可能听说过美国三里岛原子能发电站的事故,这次事故是由于人为失职和设备故障造成。由于反应堆有几道安全屏障,该事故中无一人死亡,80公里以内的200万人口中平均受到的辐射剂量还不及佩带一年夜光表受到的剂量。

  可能有人要问,反应堆会不会像原子弹那样爆炸?这是不会的,其原因至少有三条:1)原子弹使用的核燃料中90%以上是易裂变的铀-235,而发电用反应堆使用的核燃料中只有2—4%是易裂变的铀-235;2)反应堆内装有由易吸收中子的材料制成的控制棒,通过调节控制棒的位置来控制核裂变反应的速度;3)冷却剂不断地把反应堆内核裂变反应产生的巨大热量带出,使反应堆内的温度控制在所需范围内。

  0000可能有人也要问,为什么一些国家不轻易转让原子能发电技术呢?这是因为反应堆用于发电的同时,在反应堆内还产生一定量的钚-239(除大部分中子轰击铀-235原子核使其发生裂变外,仍有一部分中子被铀-238原子核俘获使后者变成钚-239。在反应堆内生成的钚-239中,约有50%以上再被中子轰击发生裂变,释放出能量,使核燃料增殖;其余不到50%的钚-239留在反应堆内。),经后处理可将钚-239提取出来,用于制造原子弹。重水堆产生的钚-239约为压水堆的两倍。

  推进动力

  将反应堆产生的热量带到蒸汽发生器,由蒸汽发生器产生的饱和蒸汽驱动汽轮机而提供推进动力。大家熟悉的核潜艇、核动力航空母舰和原子能破冰船,都是由原子能提供的推进动力。

  由于核潜艇有常规潜艇无可比拟的优点,它已成为现代海军中的主力战舰。核潜艇的主要优点是:1)续航力大。续航力是指装一次燃料能持续航行的距离。对核潜艇来说,水下续航力可达7.5万海里;而常规潜艇的水下续航力只有100—400海里(与航速有关),因为它在水下是靠蓄电池作能源来推进的,隔一定时间需浮出水面或浮至通气管深度利用柴油发电机组对蓄电池进行充电。2)航速高。核潜艇水下航速可达30节(1节为1海里/时)以上,且经常以最大航速航行;而常规潜艇水下最大航速为15—20节,但由于受到蓄电池的限制一般不以最大航速航行。3)隐蔽性能好。核潜艇在水下停留时间约2500小时,而常规潜艇仅10—20小时。世界上已建造的核潜艇约500艘,配备的反应堆近700座,超过了已建造的用于原子能发电的反应堆的总数。1971年我国建成第一艘核潜艇,并试航成功。1988年我国成功地完成了从水下核潜艇发射弹道导弹的试验。

  核动力航空母舰同样具有高航速下续航力大的优点,它能长期保持30节以上的航速而无须担心燃料的消耗。它不但不需要补给燃料的后勤舰队,还比同等级常规航母多携带一倍的航空燃料和武器。其续航力为100万海里。世界上第一艘核动力航空母舰,是美国于1960年建造的“企业号”航空母舰。此外法国也拥有核动力航空母舰。

  世界上第一艘原子能破冰船,是前苏联于1959年建造的。它比常规动力破冰船有突出优点:1)由于无须储备大量燃料,船的载重量不会因燃料消耗而减小,其破冰能力始终保持不变;2)轴功率可达75000马力,能在冰厚为2.0—2.5米的北极区航行;而常规破冰船的轴功率在25000马力左右,一般只能在冰厚为0.7—0.9米的地方航行;3)续航力不受限制。

  供热

  利用反应堆产生的能量直接供热,有十分广阔的市场。例如,建设一座20万千瓦的低温供热堆,每年消耗二氧化铀仅1吨,它可以为500万平方米的建筑供暖。而为同样建筑面积供暖的锅炉,每年需要烧煤30万吨。如果以15年为期进行比较,核供热的成本比煤供热便宜。世界上前苏联,加拿大,瑞典和我国都为寒冷地区建造了低温供热反应堆。

核反应堆的分代标志

  第一代(GEN-I)核电站是早期的原型堆电站,即1950年至1960年前期开发的轻水堆(light water reactors,LWR)核电站,如美国的希平港(Shipping Port)压水堆(pressurized-water reactor,PWR)、德累斯顿(Dresden)沸水堆(boiling water reactor,BWR)以及英国的镁诺克斯(Magnox)石墨气冷堆等。

  第二代(GEN-Ⅱ)核电站是1960年后期到1990年前期在第一代核电站基础上开发建设的大型商用核电站,如LWR(PWR,BWR)、加拿大坎度堆(CANDU)、苏联的压水堆VVER/RBMK等。目前世界上的大多数核电站都属于第二代核电站。

  第三代(GEN-Ⅲ)是指先进的轻水堆核电站,即1990年后期到2010年开始运行的核电站。第三代核电站采用标准化、最佳化设计和安全性更高的非能动安全系统,如先进的沸水堆(advancedboiling water reactors, ABWR)、系统80+、AP600、欧洲压水堆(Europeanpressurized reactor, EPR)等。

  第四代(GEN-Ⅳ)是待开发的核电站,其目标是到2030年达到实用化的程度,主要特征是经济性高(与天燃气火力发电站相当)、安全性好、废物产生量小,并能防止核扩散。

未来发展方向及第四代核反应堆

  未来核反应堆的开发目标可分为四个方面。

  1、核能的可持续发展,通过对核燃料的有效利用,实现提供持续生产能源的手段;实现核废物量的最少化,加强管理,减轻长期管理事务,保证公众健康,保护环境。

  2、提高安全性、可靠性,确保更高的安全性及可靠性;大幅度降低堆芯损伤的概率及程度,并具有快速恢复反应堆运行的能力;取消在厂址外采取应急措施的必要性。

  3、提高经济性,发电成本优于其他能源;资金的风险水平能与其他能源相比。

  4、防止核扩散,利用反应堆系统本身的特性,在商用核燃料循环中通过处理的材料,对于核扩散具有更高的防止性,保证难以用于核武器或被盗窃;为了评价核能的核不扩散性,DOE针对第四代核电站正在开发定量评价防止核扩散的方法。

第四代核电站的概念

  2002年9月19日至20日在东京召开的GIF(第四代核能系统国际论坛 Generation IV InternationalForum, GIF)会议上,与会的10个国家在94个概念堆的基础上,一致同意开发以下六种第四代核电站概念堆系统。

  气冷快堆系统

  气冷快堆(gas-cooled fast reactor,GFR)系统是快中子谱氦冷反应堆,采用闭式燃料循环,燃料可选择复合陶瓷燃料。它采用直接循环氦气轮机发电,或采用其工艺热进行氢的热化学生产。通过综合利用快中子谱与锕系元素的完全再循环,GFR能将长寿命放射性废物的产生量降到最低。此外,其快中子谱还能利用现有的裂变材料和可转换材料(包括贫铀)。参考反应堆是288兆瓦的氦冷系统,出口温度为850℃。

  铅合金液态金属冷却快堆系统

  铅合金液态金属冷却快堆(lead-cooled fast reactor,LFR)系统是快中子谱铅(铅/铋共晶)液态金属冷却堆,采用闭式燃料循环,以实现可转换铀的有效转化,并控制锕系元素。燃料是含有可转换铀和超铀元素的金属或氮化物。

  LFR系统的特点是可在一系列电厂额定功率中进行选择,例如LFR系统可以是一个1200兆瓦的大型整体电厂,也可以选择额定功率在300~400兆瓦的模块系统与一个换料间隔很长(15~20年)的50~100兆瓦的组合。LFR是一个小型的工厂制造的交钥匙电厂,可满足市场上对小电网发电的需求。

  熔盐反应堆系统

  熔盐反应堆(molten salt reactor,MSR)系统是超热中子谱堆,燃料是钠、锆和氟化铀的循环液体混合物。熔盐燃料流过堆芯石墨通道,产生超热中子谱。MSR系统的液体燃料不需要制造燃料元件,并允许添加钚这样的锕系元素。锕系元素和大多数裂变产物在液态冷却剂中会形成氟化物。熔融的氟盐具有很好的传热特性,可降低对压力容器和管道的压力。参考电站的功率水平为1000兆瓦,冷却剂出口温度700~800℃,热效率高。

  液态钠冷却快堆系统

  液态钠冷却快堆(sodium-cooled fast reactor,SFR)系统是快中子谱钠冷堆,它采用可有效控制锕系元素及可转换铀的转化的闭式燃料循环。SFR系统主要用于管理高放射性废弃物,尤其在管理钚和其他锕系元素方面。该系统有两个主要方案:中等规模核电站,即功率为150~500兆瓦,燃料用铀-钚-次锕系元素-锆合金;中到大规模核电站,即功率为500~1500兆瓦,使用铀-钚氧化物燃料。

  该系统由于具有热响应时间长、冷却剂沸腾的裕度大、一回路系统在接近大气压下运行,并且该回路的放射性钠与电厂的水和蒸汽之间有中间钠系统等特点,因此安全性能好。

  超高温气冷堆系统

  超高温气冷堆(very high temperature reactor,VHTR)系统是一次通过式铀燃料循环的石墨慢化氦冷堆。该反应堆堆芯可以是棱柱块状堆芯(如日本的高温工程试验反应器HTTR),也可以是球床堆芯(如中国的高温气冷试验堆HTR-10)。

  VHTR系统提供热量,堆芯出口温度为1000℃,可为石油化工或其他行业生产氢或工艺热。该系统中也可加入发电设备,以满足热电联供的需要。此外,该系统在采用铀/钚燃料循环,使废物量最小化方面具有灵活性。参考堆采用600兆瓦堆芯。

  超临界水冷堆系统

  超临界水冷堆(super-critical water-cooled reactor,SCWR)系统是高温高压水冷堆,在水的热力学临界点(374℃,22.1兆帕)以上运行。超临界水冷却剂能使热效率提高到目前轻水堆的约1.3倍。该系统的特点是,冷却剂在反应堆中不改变状态,直接与能量转换设备相连接,因此可大大简化电厂配套设备。燃料为铀氧化物。堆芯设计有两个方案,即热中子谱和快中子谱。参考系统功率为1700兆瓦,运行压力是25兆帕,反应堆出口温度为510~550℃。

我国第四代核反应堆进展

  华能山东石岛湾核电厂高温气冷堆核电站示范工程已于2008年开始建设,工程将于2013年11月投产发电。这是中国第一座采用第四代核反应堆的核电站,使用的是第四代高温气冷石墨球床反应堆,简称球床堆。

  第四代反应堆的六个构型中,高温气冷堆是一个很有前途的方案,现行的高温气冷堆有两个流派:石墨球床和柱状燃料的,前者的使用者是中国和南非,后者是美、俄和日本。

  石墨球床堆也叫卵石堆,最早是德国在本世纪60年代建成了原理堆,由于技术和需求的限制,30年没有大的发展,直到上个世纪90年代,国际能源危机的压力日趋严重,南非和中国先后开始了对这一技术的现代化研究和实用化探索,分别是南非国营电力设计的PBMR(400MW热功率)和中国原子能技术研究院设计的HTR-PM(460MW)。两者的设计都已经基本完成,其间中国完成了清华大学10Mw原理堆(HTR-10)的建造和运行工作,HTR-10已经并网多时了。

  所有的核电站都由几个部分组成:

  1:堆芯,核燃料在此低速燃烧,产生热量

  2:冷却回路,堆芯产生的热量通过回路里的介质传导出去,使得堆芯保持一个稳定的反应温度,持续工作。

  3:发电机组,把冷却回路中的热量通过汽轮机的方式转换成电能。

  先说说燃料组件,石墨球床气冷堆的燃料组件大大不同于传统的核燃料组件,你可以把它看成一个西瓜,外壳是硬化的石墨材料,相当于西瓜皮,里面是稍微松散的石墨填料,相当于西瓜瓤,在西瓜瓤里均匀分布着一些以二氧化铀为主要成分的西瓜子,这就是真正的核燃料颗粒,顺便说一下,这个瓜子有个用陶瓷做的瓜子壳,而二氧化铀则相当于瓜子仁。这个西瓜结构的燃料组件直径是6厘米。

  在反应堆的堆芯里面(多是一个环形的圆柱体),这些燃料组件就和煤球炉子里一样,直接填充进去就好了,在一定的温度下,瓜子仁里面的核燃料开始裂变反应,产生热量,煤球里面的石墨起到慢化作用,保持链式反应的稳定运行,正常情况下,这些煤球的温度是900摄氏度左右。

  一堆球球堆在一起,他们的周围就自然而然的形成了均匀的空隙,这些空隙就是堆芯内部的冷却空间,在堆芯的一端注入高压氦气,另一端让高压氦气流出,快速流过煤球空隙的氦气带走了多余的热量,就构成了堆芯冷却的第一回路。900摄氏度的高压氦气从反应堆中出来之后,有两个途径,一是继续经过一个水冷回路,把水加热成蒸汽,推动汽轮机带动发电机发电,更先进一些的就是直接用氦气透平机组把热能转换成机械能,带动发电机。冷却后的氦气继续打回堆芯,就构成了完整的换能循环过程。

  这就是石墨球床的基本工作原理,相对于当前的压水堆/沸水堆/重水堆电站,简直巧妙到一定程度了。

  石墨球床堆的特点

  首先,他的燃料组件尺寸很小,精度要求也不高,制造起来就容易得多。

  其次,堆芯的结构很简单,简直就是一个高精度的煤球炉子,只要容纳燃料球就好了。

  第三,他的冷却热质是氦气,好处有三:惰性气体,不用担心污染的传递,即使泄露也没事;单一的气体工质,不用复杂的流体控制理论;气体温度很高,高达900度,而压水堆则只有300-400度,未来的超临界堆也不过500多度,所以效率不比压水堆低。这就大大简化了冷却回路的复杂性,甚至只要氦气透平机过关,一个回路就可以了,而压水堆由于必须隔离污染的一次循环水,必须设计成两个回路。由于工质是“干净”的,不必考虑管路中子脆化的问题,高温气冷堆的回路造价和使用期限以及维护成本都低得多。

  第四,球床气冷堆简直就是一个烧核燃料的煤球炉子,换燃料的方式很简单:把烧完的煤球从炉子下面放出去,新的煤球从上面倒进去就完了,不用停堆换组件。

  不仅如此,气冷堆还有先天的安全性,几乎是“绝对安全”的,核电事故那就是堆芯因为温度过高而融化,进而破坏安全设施,造成核泄露。由于球床燃料的结构特点,这是不会发生的。前面我们说了,燃料煤球里面的瓜子壳是陶瓷材料,瓜子仁是二氧化铀燃料,这个壳可以承受1600度的温度,正常情况下,外面的石墨“瓜瓤”的温度是900度左右,一旦作为冷却的氦气停止供应了,煤球的温度就会升高,“瓜瓤”的温度也会升高,由于瓜瓤比瓜子多得多,会迅速带走瓜子表面的温度,向外界辐射出去,保证“瓜子壳”不会超过极限的1600度。所以堆芯是不可能融化的。清华的示范堆就曾经不止一次表演过在不插入控制棒的情况下停止冷却的氦气泵,整个堆芯迅速达到热平衡,进而安全停堆。

  如果说第三代压水堆AP-1000的非能动安全设计还依赖于一套需要维护的安全设备的话,高温气冷堆连这套设备也省了。所以说,这种设计不再需要能耐压的安全壳,不再需要冗余的安全设备,甚至可以简化成一回路设计,大大降低了成本。做成模块化的电站,由于其独有的安全性,甚至可以在大城市周边直接安装使用。

  球床气冷堆的效率优势,即电效率超过40%,大大高于哪怕是三代的压水堆,甚至四代的超临界堆,这就进一步降低了发电成本。此外,由于热效率高,气冷堆的供热优势也十分明显,未来无论是高温裂解天然气制取氢气还是高温电解水制取氢气,900度的高温热源都是必不可少的。

  此外,球床气冷堆的优势还在于它的燃料燃烧十分充分,后处理成本低,模块化的气冷球床电站你可以给任何人用,而不必担心核废料被做成脏弹搞恐怖袭击。

  球床堆的缺点,那就是对于气冷回路的加工要求很高,氦气透平机的功率不易做大(不过没关系,我们可以并联若干个小的,一样用),而气冷堆的功率密度远远小于压水堆(当然了,冷却工质是气体,怎么可能小得了),这对于发电堆来说不是什么缺点,但是对于动力堆却是致命的,也就是说,气冷堆上潜艇之类的传闻,完全是无稽之谈了。

  相对于球床气冷堆,另一种流派就是柱状燃料的气冷堆,不同之处就是把燃料做成柱状,也就是大块的石墨里面有很多小洞,小洞里镶嵌包裹陶瓷外壳的二氧化铀燃料线。这样的优势是效率更好一些,电效率可以接近50%,且单堆功率容易做大。缺点是组件制造要求高,无法不停堆换燃料。

  后一种流派的代表是日本、美国和俄罗斯,日本设计了GTHTR300,单堆热功率高达600Mw,比体积差不多的中国HTR-PM大了1/3,俄罗斯和美国也联合设计了GT-MHR,与日本的类似。日本的30Mw柱状燃料高温气冷堆HTTR也已经投入了并网运行。

  总之,高温气冷堆是四代核电中最接近使用的一种方案,优点是安全性和成本,缺点是没有技术的沿革,很多地方需要重头做起(其他方案,例如超临界堆,我们可以看作压水堆的进化),这就需要建设示范堆来逐步摸索经验,找出不足,进一步修正商用堆的设计。

个人工具
名字空间

变换
查看
操作
导航
工具箱