来自当知百科
跳转到: 导航搜索

目录

读取信息

  细胞间通过传递信号分子相互交流。有些信号分子可以通过血液在体内进行远距离传输;另一些在邻近细胞间传递。人体中存在成千上万种信号分子,常见的如控制兴奋水平的肾上腺素,传递血糖水平的高血糖素,标志组织损伤的组胺和在神经系统中传递信息的多巴胺。

  一般情况下,信号分子与细胞表面的受体结合,然后,由以G蛋白为核心的信号传递系统把信息从胞外传递到胞内。G蛋白系统是细胞中最常见的信号传递方式。细胞中存在数以千计的特异性G蛋白偶联受体:有些识别激素,改变新陈代谢的水平;有些在神经系统中传递神经信号。我们的视觉依赖于一种光敏G蛋白系统;而我们的嗅觉则由上千种形式各异的受体控制,它们有各自专一识别的气味分子。受体和G蛋白共同完成信号传导过程。

G蛋白调控

  G蛋白在信号转导过程中起着分子开关的作用。与GDP(紫色)结合后,G蛋白处于非活性状态。GTP取代GDP后,G蛋白活化并传递信号。G蛋白形式多样,大多数用于信号传递,有些则在诸如蛋白质合成中起重要作用。本文主要介绍异三聚体G蛋白,它由三条不同的链组成,分别为α(棕黄色)β(蓝色)γ(绿色)。红色部分是α亚基表面的一个环状结构,在信号传递中至关重要。

紧依细胞膜

  附着于G蛋白链的一些小分子类脂(图右上部),嵌入细胞膜,使G蛋白结合于细胞内膜表面,与受体接近。蛋白质结晶时这些类脂被除去,因此晶体结构中不显示。

攻击G蛋白

  G蛋白系统是许多信号传递途径的中心环节,因此也就成了众多药物和毒素攻击的靶位点。市面上的很多药物,如Claritin和Prozac,以及大量滥用的毒品:可卡因,海洛因,大麻等,通过与G蛋白偶联进入细胞发挥其药性。霍乱菌产生一种毒素,与G蛋白处在关键位置的核苷结合,使G蛋白处于持续活化状态,破坏肠细胞液体平衡的正常调控。感染者因身体丧失水,钠和氯化物而脱水。

  信号接力G蛋白位于细胞膜内表面。当受体同激素或神经递质结合后,信息传递过程起始。如结合肾上腺素后,受体首先改变形状,与细胞内非活性状态的G蛋白结合。这种结合使G蛋白放弃GDP,接受GTP。GTP使一个小的环状结构变形,G蛋白分解成两部分——其中携带GTP的α亚基沿膜移动直至遇到腺苷酸环化酶,小的环状结构与腺苷酸环化酶结合并将其激活。活化后的腺苷酸环化酶产生大量cAMP(环腺苷酸)分散到细胞内——传达信息。最终,GTP水解成GDP,G蛋白重新组装,恢复非活性状态。

  这种信号传递途径的最大优点是使信号加强。与信号传递链中的酶(如腺苷酸环化酶)结合后,细胞外微弱的信号在胞内被转换成强信号。在前面的例子中,仅一个肾上腺素分子就可以激生大量的cAMP.

  结构探索GTP是G蛋白活性状态的开关。在活性状态,GTP的最后一个磷酸基团与G蛋白表面的环状结构相连,使环处于紧密状态。当GTP水解成GDP时,这个磷酸基被移去,GDP变短不能与此环相连,导致环结构松散,转变为非活性三聚体,如图左蛋白质编码1gg2。

  β亚基同样值得花时间研究,如蛋白质编码1gg2, 1got 和1tbg。如果沿着它的的迹线绘一条带状图,你会发现这是一个美妙的螺旋桨状结构。

个人工具
名字空间

变换
查看
操作
导航
工具箱