来自当知百科
跳转到: 导航搜索

目录

类型

  按晶体管的沟道导电类型,可分为P沟MOSIC、N沟MOSIC以及将P沟和N沟MOS晶体管结合成一个电路单元的互补MOSIC,分别称为PMOS、NMOS和CMOS集成电路。随着工艺技术的发展,CMOS集成电路已成为集成电路的主流,工艺也日趋完善和复杂,由P阱或N阱CMOS发展到双阱CMOS工艺。80年代又出现了集双极型电路和互补金属-氧化物-半导体(CMOS)电路优点的BiCMOS集成电路结构。按栅极材料可分为铅栅、硅栅、硅化物栅和难熔金属(如钼、钨)栅等MOSIC,栅极尺寸已由微米进入亚微米(0.5~1微米)和强亚微米(0.5微米以下)量级。此外,还发展了不同的MOS集成电路结构的MOSIC:如浮栅雪崩注入MOS(FAMOS)结构,用于可擦写只读存贮器;扩散自对准MOS(DMOS)结构和V型槽MOS结构等,可满足高速、高电压要求。近年来发展了以蓝宝石为绝缘衬底的CMOS结构,具有抗辐照、功耗低和速度快等优点。MOSIC广泛用于计算机、通信、机电仪器、家电自动化、航空航天等领域,可使整机体积缩小、工作速度快、功能复杂、可靠性高、功耗低和成本便宜等。

优点

  ①制造结构简单,隔离方便。

  ②电路尺寸小、功耗低适于高密度集成。

  ③MOS管为双向器件,设计灵活性高。

  ④具有动态工作独特的能力。

  ⑤温度特性好。其缺点是速度较低、驱动能力较弱。一般认为MOS集成电路功耗低、集成度高,宜用作数字集成电路;双极型集成电路则适用作高速数字和模拟电路。

研发和推广

  60年代末、70年代初,我国在集成电路技术的研究上刚刚起步,只是对双极型小规模集成电路开始进行研制和少量生产。当时,国外MOS电路发展很快,与双极型电路相比,MOS集成电路具有电路简单、功耗低、集成度高的优势,而国内MOS集成电路技术的研究开发上还存在不少困难。一个困难是MOS器件很容易被静电击穿,有人形容说:“MOS、MOS,一摸就死”;另一个难点是MOS器件栅氧化层电荷不易控制,因而大大影响了MOS电路的可生产性与工作稳定性。所以,大家对MOS集成电路的发展前途仍有很多疑虑。

  在这样的形势下,半导体车间的徐葭生同志带领十几个中青年教师,从1970年开始,毅然投入了我国MOS集成电路研究开发与应用推广的事业。在当时缺乏技术资料和工艺设备、生产条件十分落后的情况下,大家自力更生、团结奋斗,从工艺和电路设计上解决了栅氧化层电荷与静电损伤保护问题,为MOS集成电路在我国的发展扫清了技术障碍。在此基础上,开发研制成功了中小规模MOS数控系列电路,包括了计数器、寄存器、译码器及各种触发器、门电路等,并进行了小量生产。为了使这些电路得到推广,他们还制作了频率计、数码显示等多种应用部件,到有关单位演示,帮助解决应用中的技术问题。这样,终于使MOS集成电路得到社会认可。在此期间先后接产此数控系列电路的有,北京半导体器件五厂、前门器件厂、上海元件五厂、天津第一半导体厂、石家庄半导体器件厂、保定无线电二厂等。这些数控系列电路在相当长一段时间内成了不少半导体厂的主打产品。清华半导体车间除了派人传授、推广技术之外,还多次举办短训班,帮助这些企业培养生产技术骨干。可以说,清华的半导体车间成为了我国MOS集成技术最早的发源地。

  在成功开发、推广中小规模MOS数控系列电路的基础上,半导体车间又进一步向中大规模MOS集成电路进军,先后研制成功050台式计算机(器)全套电路,2240位96字符发生器和1KDRAM等多种大规模集成电路。从1970年开始直至1976年以后相当长的时期内,清华在国内一直保持着MOS集成电路技术的最高水平。

生产条件

  除了集成电路技术本身之外,半导体车间对我国集成电路生产基础条件的发展也起了重要的推动作用。为了满足大规模集成电路生产对于设备的高精度和自动化要求,有很多关键设备都是自制的,例如高精度初缩机、扩散炉和三氯乙烯氧化系统、高速匀胶机、等离子刻蚀机等。有些设备是由半导体车间提出性能要求并进行试用改进,与其它单位协作生产,例如高精度分步重复精缩机就是与我校无线电系、精仪系协作定型生产的,这一精缩机成了当时国内集成电路厂普遍采用的设备。

  为了满足大规模集成电路制造对减少灰尘沾污的要求,半导体车间自己设计、自己采购材料、联系施工,对原来的800平方米实验室进行了净化改造,于1975年建成了350平方米、净化级别达到1000级和10000级的超净车间。这是当时国内集成电路生产用的第一个超净车间,它满足了大规模集成电路研制的需要,一直使用到1993年。

突出贡献

  由于徐葭生同志对我国集成电路事业的突出贡献,他作为我校仅有的两名代表之一参加了1978年由邓小平倡导召开的全国科学大会。

个人工具
名字空间

变换
查看
操作
导航
工具箱